3D super-resolution using generalized sampling expansion
نویسندگان
چکیده
Using a probabilistic interpretation of Papoulis' generalized sampling theorem, an iterative algorithm has been devised for 3D reconstruction of a Lam-bertian surface at sub-pixel accuracy. The problem has been formulated as an optimization one in a Bayesian framework. The latter allows for introducing a priori information on the solution, using Markov Random Fields (MRF). The estimated 3D features of the surface are the albedo and the height which are obtained simultaneously using a set of low resolution images. R esum e : Dans ce rapport, nous pr esentons une interpr etation probabiliste du th eor eme d' echantillonnage multi-canal de Papoulis, qui nous permet de mettre en uvre un algorithme it eratif pour la reconstruction 3D d'une surface lambertienne a haute r esolution. Le probl eme est donc formalis e comme celui de la minimisation d'une fonction de co^ ut et il est trait e dans un cadre bayesien, ce qui nous permet, d'autre part, d'introduire de l'information a priori en utilisant les champs de Markov. Les caract eristiques reconstruites a haute r esolution sont l'albedo et l'altitude de la surface observ ee, qui sont obtenus simultan ement a partir d'une s equence d'images a basse r esolution.
منابع مشابه
3D SUPER-RESOLUTION USING GENERALIZED SAMPLING EXPANSION - Image Processing, 1995. Proceedings., International Conference on
A 3D super-resolution algorithm is proposed below, based on a probabilistic interpretation of the ndimensional version of Papoulis’ generalized sampling theorem. The algorithm is devised for recovering the albedo and the height map of a Lambertian surface in a Bayesian framework, using Markov Random Fields for modeling the a priori knowledge.
متن کاملSub-pixel Reconstruction of a Variable Albedo Lambertian Surface
Using a probabilistic interpretation of an n dimensional extension of Papoulis's Generalized Sampling Theorem, an iterative algorithm has been devised for 3D reconstruction of a Lambertian surface at subpixel accuracy. The problem has been formulated as an optimization one in a Bayesian framework. The latter allows for introducing a priori information on the solution, using Markov Random Fields...
متن کاملGeneralized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions
Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guess...
متن کاملSampling reconstruction of N-dimensional bandlimited images after multilinear filtering in fractional Fourier domain
This paper addresses the problem of multidimensional signal reconstruction from generalized samples in fractional Fourier domain including the deterministic case and the stochastic case. The generalized sampling expansion is investigated for the case where the fractional bandlimited input depends on N real variable, i.e., f t ð Þ 1⁄4 f t1 , ,tN ð Þ and is used as a common input to a parallel ba...
متن کاملAn Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces
A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995